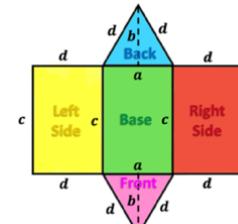
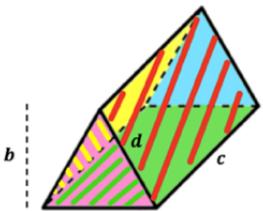
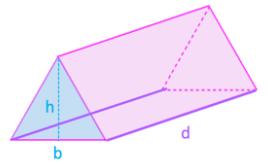


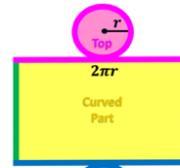
Note: a cube is where all sides are the same length



area of top
+ area of bottom
+ area of front
+ area of back
+ area of left side
+ area of right side

$$= ac + ac + ab + ab + bc + bc$$

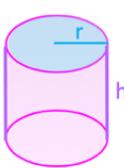

area of cross section \times depth
= area of rectangle \times depth
= acb

Triangular Prism

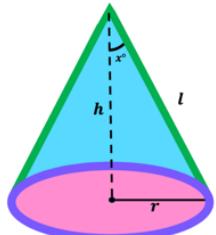


area of base rectangle
+ area of left rectangle
+ area of right rectangle
+ area of back triangle
+ area of front triangle

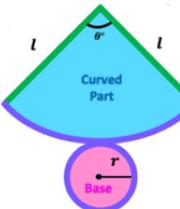
$$= ac + cd + cd + \frac{1}{2} bd + \frac{1}{2} bd$$


area of cross section \times depth
= area of triangle \times depth
= $\frac{1}{2} bhc$

Cylinder


area of top circle
+ area of bottom circle
+ area of a rectangle

$$= \pi r^2 + \pi r^2 + 2\pi rh$$



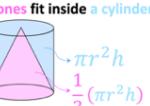
area of cross section \times depth
= area of a circle \times depth
= $\pi r^2 h$

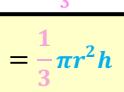
Cone

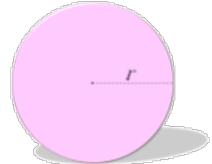
The problem here is that we don't readily know the angle θ in order to find the area of the sector part. We have to do quite a bit of work to find it. Instead, we just memorise the formula.

area of sector
+ area of circle

Remember

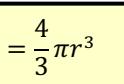
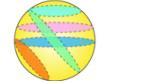

$$= \pi rl + \pi r^2$$


No uniform cross section now (all different sized circles), so we have a formula instead


To help remember the formula:

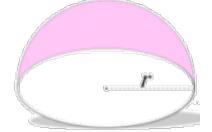
Remember

Sphere

Remember

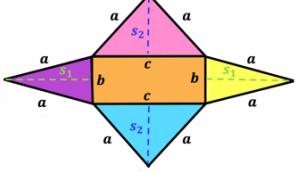
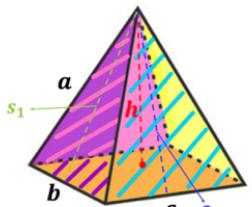
$$= 4\pi r^2$$


No uniform cross sections (all different sized circles), so again we have a formula instead

Remember

$$= \frac{4}{3} \pi r^3$$

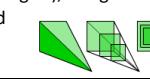
Hemisphere



Half the S.A. of a sphere
+ the EXPOSED circle

$$2\pi r^2 + \pi r^2 = 3\pi r^2$$

We half the volume of a sphere

$$= \frac{2}{3} \pi r^3$$


Pyramid

area of base rectangle
+ area of pink triangle
+ area of blue triangle
+ area of purple triangle
+ area of yellow triangle

$$= bc + \frac{1}{2} as_2 + \frac{1}{2} as_2 + \frac{1}{2} as_1 + \frac{1}{2} as_1$$

Note: You'll need to use 3D trig knowledge to find the any of the lengths if not given them

Remember

$$= \frac{1}{3} (\text{base area})(\text{height})$$

Did you know that the volume of a pyramid also applies to the volume of a cone? $V = \frac{1}{3} (\pi r^2)h$